منابع مشابه
Best Quadratic Spline Approximation
We present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approxim...
متن کاملCollision-free Piecewise Quadratic Spline with Regular Quadratic Obstacles Collision-free Piecewise Quadratic Spline with Regular Quadratic Obstacles
We classify mutual position of a quadratic Bézier curve and a regular quadric in three dimensional Euclidean space. For given first and last control point, we find the set of all quadratic Bézier curves having no common point with a regular quadric. This system of such quadratic Bézier curves is represented by the set of their admissible middle control points. The spatial problem is reduced to ...
متن کاملQuadratic Spline Quasi - Interpolants on Bounded Domains
We study some C1 quadratic spline quasi-interpolants on bounded domains ⊂ Rd, d = 1, 2, 3. These operators are of the form Q f (x) = ∑ k∈K () μk( f )Bk(x), where K () is the set of indices of B-splines Bk whose support is included in the domain and μk( f ) is a discrete linear functional based on values of f in a neighbourhood of xk ∈ supp(Bk). The data points x j are vertices of a unifor...
متن کاملQuadratic spline quasi-interpolants and collocation methods
Univariate and multivariate quadratic spline quasi-interpolants provide interesting approximation formulas for derivatives of approximated functions that can be very accurate at some points thanks to the superconvergence properties of these operators. Moreover, they also give rise to good global approximations of derivatives on the whole domain of definition. From these results, some collocatio...
متن کاملAsymptotic Approximation by Quadratic Spline Curves
For a planar curve C with positive affine curvature, we derive an asymptotic formula for the area approximation by quadratic spline curves with n knots lying on C. The order of approximation is 1/n4 and the formula depends on an integral over the affine curvature. 1991 AMS subject classification: 52A10, 53A04, 53A15, 41A15, 41A50
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1988
ISSN: 0893-9659
DOI: 10.1016/0893-9659(88)90067-5